Collision detection problem on Quake3 map

You are an experienced programmer and have a problem with the engine, shaders, or advanced effects? Here you'll get answers.
No questions about C++ programming or topics which are answered in the tutorials!

Collision detection problem on Quake3 map

Postby retobotic » Thu Jun 15, 2017 11:39 am


I'm trying to set collision detection on a .pk3 map that i've downloaded and I'm having trouble.
In fact, when I loaded the map using irrlicht example 02.Quake3Map, only a few textures where loaded and the map looked like this:
However, when I loaded it with the example 16.Quake3MapShader, the map looked fine (except one or two missing texture):

I then modified the code of example16 to add collison detection to the map but it didn't worked. In fact, the collision detection only apply on a few objects on the map (the same objects that where showing when I loaded the map with example2) but not on the ground or the walls for example.

So I have two questions, why did the map not load properly with example 2 and how to make collision detection work in this case ?

Thanks ;)

The code that i'm using:
cpp Code: Select all
/** Example 016 Quake3 Map Shader Support
This Tutorial shows how to load a Quake 3 map into the
engine, create a SceneNode for optimizing the speed of
rendering and how to create a user controlled camera.
Lets start like the HelloWorld example: We include
the irrlicht header files and an additional file to be able
to ask the user for a driver type using the console.

#include <irrlicht.h>
#include "driverChoice.h"
  define which Quake3 Level should be loaded

  #define QUAKE3_STORAGE_FORMAT addFileArchive
  #define QUAKE3_STORAGE_1  "./../media/map-20kdm2.pk3"
  #define QUAKE3_MAP_NAME     "maps/20kdm2.bsp"
using namespace irr;
using namespace scene;
Again, to be able to use the Irrlicht.DLL file, we need to link with the
Irrlicht.lib. We could set this option in the project settings, but
to make it easy, we use a pragma comment lib:

#ifdef _MSC_VER
#pragma comment(lib, "Irrlicht.lib")
Ok, lets start.

int IRRCALLCONV main(int argc, char* argv[])
  Like in the HelloWorld example, we create an IrrlichtDevice with
  createDevice(). The difference now is that we ask the user to select
  which hardware accelerated driver to use. The Software device would be
  too slow to draw a huge Quake 3 map, but just for the fun of it, we make
  this decision possible too.

  // ask user for driver
  video::E_DRIVER_TYPE driverType=driverChoiceConsole();
  if (driverType==video::EDT_COUNT)
    return 1;
  // create device and exit if creation failed
  const core::dimension2du videoDim(1080,720);
  IrrlichtDevice *device = createDevice(driverType, videoDim, 32, false );
  if (device == 0)
    return 1; // could not create selected driver.
  const char* mapname=0;
  if (argc>2)
    mapname = argv[2];
    mapname = QUAKE3_MAP_NAME;
  Get a pointer to the video driver and the SceneManager so that
  we do not always have to write device->getVideoDriver() and

  video::IVideoDriver* driver = device->getVideoDriver();
  scene::ISceneManager* smgr = device->getSceneManager();
  gui::IGUIEnvironment* gui = device->getGUIEnvironment();
  //! add our private media directory to the file system
  To display the Quake 3 map, we first need to load it. Quake 3 maps
  are packed into .pk3 files, which are nothing other than .zip files.
  So we add the .pk3 file to our FileSystem. After it was added,
  we are able to read from the files in that archive as they would
  directly be stored on disk.

  if (argc>2)
  // Quake3 Shader controls Z-Writing
  smgr->getParameters()->setAttribute(scene::ALLOW_ZWRITE_ON_TRANSPARENT, true);
  Now we can load the mesh by calling getMesh(). We get a pointer returned
  to a IAnimatedMesh. As you know, Quake 3 maps are not really animated,
  they are only a huge chunk of static geometry with some materials
  attached. Hence the IAnimated mesh consists of only one frame,
  so we get the "first frame" of the "animation", which is our quake level
  and create an Octree scene node with it, using addOctreeSceneNode().
  The Octree optimizes the scene a little bit, trying to draw only geometry
  which is currently visible. An alternative to the Octree would be a
  AnimatedMeshSceneNode, which would draw always the complete geometry of
  the mesh, without optimization. Try it out: Write addAnimatedMeshSceneNode
  instead of addOctreeSceneNode and compare the primitives drawn by the
  video driver. (There is a getPrimitiveCountDrawed() method in the
  IVideoDriver class). Note that this optimization with the Octree is only
  useful when drawing huge meshes consisting of lots of geometry.

  scene::IQ3LevelMesh* const mesh =
    (scene::IQ3LevelMesh*) smgr->getMesh(mapname);
  if ( 0 == mesh )
    return (1);
      add the geometry mesh to the Scene ( polygon & patches )
      The Geometry mesh is optimised for faster drawing

   scene::ITriangleSelector* selector = 0;
   scene::ISceneNode* node = 0;
   if ( mesh )
      scene::IMesh *geometry = mesh->getMesh(quake3::E_Q3_MESH_GEOMETRY );
      node = smgr->addMeshSceneNode ( geometry );
      selector = smgr->createTriangleSelector(mesh->getMesh(quake3::E_Q3_MESH_GEOMETRY ), node);
    now construct SceneNodes for each Shader
    The Objects are stored in the quake mesh scene::E_Q3_MESH_ITEMS
    and the Shader ID is stored in the MaterialParameters
    mostly dark looking skulls and moving lava.. or green flashing tubes?

  if ( mesh )
    // the additional mesh can be quite huge and is unoptimized
    const scene::IMesh * const additional_mesh = mesh->getMesh(quake3::E_Q3_MESH_ITEMS);
    gui::IGUIFont *font = device->getGUIEnvironment()->getFont("../../media/fontlucida.png");
    u32 count = 0;
    for ( u32 i = 0; i!= additional_mesh->getMeshBufferCount(); ++i )
      const IMeshBuffer* meshBuffer = additional_mesh->getMeshBuffer(i);
      const video::SMaterial& material = meshBuffer->getMaterial();
      // The ShaderIndex is stored in the material parameter
      const s32 shaderIndex = (s32) material.MaterialTypeParam2;
      // the meshbuffer can be rendered without additional support, or it has no shader
      const quake3::IShader *shader = mesh->getShader(shaderIndex);
      if (0 == shader)
      // we can dump the shader to the console in its
      // original but already parsed layout in a pretty
      // printers way.. commented out, because the console
      // would be full...
      // quake3::dumpShader ( Shader );
      node = smgr->addQuake3SceneNode(meshBuffer, shader);
      count += 1;
      core::stringw name( node->getName() );
      node = smgr->addBillboardTextSceneNode(
          font, name.c_str(), node,
          core::dimension2d<f32>(80.0f, 8.0f),
          core::vector3df(0, 10, 0));
      Now we only need a Camera to look at the Quake 3 map.
      And we want to create a user controlled camera. There are some
      different cameras available in the Irrlicht engine. For example the
      Maya Camera which can be controlled compareable to the camera in Maya:
      Rotate with left mouse button pressed, Zoom with both buttons pressed,
      translate with right mouse button pressed. This could be created with
      addCameraSceneNodeMaya(). But for this example, we want to create a
      camera which behaves like the ones in first person shooter games (FPS).

   scene::ICameraSceneNode* camera = smgr->addCameraSceneNodeFPS();
   scene::ISceneNodeAnimator* anim = smgr->createCollisionResponseAnimator(
      selector, camera, core::vector3df(30,40,30),
  Now we only need a Camera to look at the Quake 3 map. And we want to
  create a user controlled camera. There are some different cameras
  available in the Irrlicht engine. For example the Maya Camera which can
  be controlled comparable to the camera in Maya: Rotate with left mouse
  button pressed, Zoom with both buttons pressed, translate with right
  mouse button pressed. This could be created with
  addCameraSceneNodeMaya(). But for this example, we want to create a
  camera which behaves like the ones in first person shooter games (FPS).

    scene::IAnimatedMeshSceneNode* anms =
  if (selector)
      scene::ISceneNodeAnimator* anim =
  smgr->createCollisionResponseAnimator(selector, anms,
      selector->drop(); // As soon as we're done with the selector, drop it.
      anim->drop();  // And likewise, drop the animator when we're done referring to it.
  if (anms)
  To make the model look right we disable lighting, set the
  frames between which the animation should loop, rotate the
  model around 180 degrees, and adjust the animation speed and
  the texture. To set the right animation (frames and speed), we
  would also be able to just call
  "anms->setMD2Animation(scene::EMAT_RUN)" for the 'run'
  animation instead of "setFrameLoop" and "setAnimationSpeed",
  but this only works with MD2 animations, and so you know how to
  start other animations. But a good advice is to not use
  hardcoded frame-numbers...

      anms->setMaterialFlag(video::EMF_LIGHTING, false);
      anms->setMaterialTexture( 0, driver->getTexture("../../media/sydney.bmp") );
      anms->setPosition(core::vector3df(0, 0, 0));
      anms->setScale(core::vector3df(2, 2, 2));
    so we need a good starting Position in the level.
    we can ask the Quake3 Loader for all entities with class_name
    we choose a random launch

  if ( mesh )
    quake3::tQ3EntityList &entityList = mesh->getEntityList();
    quake3::IEntity search; = "info_player_deathmatch";
    s32 index = entityList.binary_search(search);
    if (index >= 0)
      s32 notEndList;
        const quake3::SVarGroup *group = entityList[index].getGroup(1);
        u32 parsepos = 0;
        const core::vector3df pos =
          quake3::getAsVector3df(group->get("origin"), parsepos);
        parsepos = 0;
        const f32 angle = quake3::getAsFloat(group->get("angle"), parsepos);
        core::vector3df target(0.f, 0.f, 1.f);
        camera->setTarget(pos + target);
        notEndList = (  index < (s32) entityList.size () &&
                entityList[index].name == &&
                (device->getTimer()->getRealTime() >> 3 ) & 1

        notEndList = index == 2;
      } while ( notEndList );
  The mouse cursor needs not to be visible, so we make it invisible.

  We have done everything, so lets draw it. We also write the current
  frames per second and the drawn primitives to the caption of the
  window. The 'if (device->isWindowActive())' line is optional, but
  prevents the engine render to set the position of the mouse cursor
  after task switching when other program are active.

  int lastFPS = -1;
  if (device->isWindowActive())
    driver->beginScene(true, true, video::SColor(255,20,20,40));
    int fps = driver->getFPS();
    //if (lastFPS != fps)
      io::IAttributes * const attr = smgr->getParameters();
      core::stringw str = L"Q3 [";
      str += driver->getName();
      str += "] FPS:";
      str += fps;
      str += " Cull:";
      str += attr->getAttributeAsInt("calls");
      str += "/";
      str += attr->getAttributeAsInt("culled");
      str += " Draw: ";
      str += attr->getAttributeAsInt("drawn_solid");
      str += "/";
      str += attr->getAttributeAsInt("drawn_transparent");
      str += "/";
      str += attr->getAttributeAsInt("drawn_transparent_effect");
      lastFPS = fps;
  In the end, delete the Irrlicht device.

  return 0;

Posts: 1
Joined: Thu Jun 15, 2017 11:04 am

Re: Collision detection problem on Quake3 map

Postby CuteAlien » Fri Jun 16, 2017 10:10 am

I'm not too familiar with the format. But the difference between example 02 and example 16 is that the latter also loads the quake shaders and creates nodes for those. And I guess collision doesn't work for them if you don't add collisions for those nodes as well. It's an extra loop in example 16 where it adds them. Take a look at that code - the part with "now construct SceneNodes for each Shader".
IRC: #irrlicht on
Code snippets, patches&stuff:
Free racer created with Irrlicht:
User avatar
Posts: 8528
Joined: Mon Mar 06, 2006 2:25 pm
Location: Tübingen, Germany

Return to Advanced Help

Who is online

Users browsing this forum: No registered users and 1 guest